Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Proc Natl Acad Sci U S A ; 120(5): e2212577120, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2233252

ABSTRACT

SARS-CoV-2 spike requires proteolytic processing for viral entry. A polybasic furin-cleavage site (FCS) in spike, and evolution toward an optimized FCS by dominant variants of concern (VOCs), are linked to enhanced infectivity and transmission. Here we show interferon-inducible restriction factors Guanylate-binding proteins (GBP) 2 and 5 interfere with furin-mediated spike cleavage and inhibit the infectivity of early-lineage isolates Wuhan-Hu-1 and VIC. By contrast, VOCs Alpha and Delta escape restriction by GBP2/5 that we map to the spike substitution D614G present in these VOCs. Despite inhibition of spike cleavage, these viruses remained sensitive to plasma membrane IFITM1, but not endosomal IFITM2 and 3, consistent with a preference for TMPRSS2-dependent plasma membrane entry. Strikingly, we find that Omicron is unique among VOCs, being sensitive to restriction factors GBP2/5, and also IFITM1, 2, and 3. Using chimeric spike mutants, we map the Omicron phenotype and show that the S1 domain determines Omicron's sensitivity to GBP2/5, whereas the S2' domain determines its sensitivity to endosomal IFITM2/3 and preferential use of TMPRSS2-independent entry. We propose that evolution of SARS-CoV-2 for the D614G substitution has allowed for escape from GBP restriction factors, but the selective pressures on Omicron for spike changes that mediate antibody escape, and altered tropism, have come at the expense of increased sensitivity to innate immune restriction factors that target virus entry.


Subject(s)
COVID-19 , Furin , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Antibodies , Cell Membrane , Factor V , Spike Glycoprotein, Coronavirus/genetics , Membrane Proteins/genetics
3.
Nature ; 602(7897): 487-495, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585830

ABSTRACT

The emergence of SARS-CoV-2 variants of concern suggests viral adaptation to enhance human-to-human transmission1,2. Although much effort has focused on the characterization of changes in the spike protein in variants of concern, mutations outside of spike are likely to contribute to adaptation. Here, using unbiased abundance proteomics, phosphoproteomics, RNA sequencing and viral replication assays, we show that isolates of the Alpha (B.1.1.7) variant3 suppress innate immune responses in airway epithelial cells more effectively than first-wave isolates. We found that the Alpha variant has markedly increased subgenomic RNA and protein levels of the nucleocapsid protein (N), Orf9b and Orf6-all known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein that is required for activation of the RNA-sensing adaptor MAVS. Moreover, the activity of Orf9b and its association with TOM70 was regulated by phosphorylation. We propose that more effective innate immune suppression, through enhanced expression of specific viral antagonist proteins, increases the likelihood of successful transmission of the Alpha variant, and may increase in vivo replication and duration of infection4. The importance of mutations outside the spike coding region in the adaptation of SARS-CoV-2 to humans is underscored by the observation that similar mutations exist in the N and Orf9b regulatory regions of the Delta and Omicron variants.


Subject(s)
COVID-19/immunology , COVID-19/virology , Evolution, Molecular , Immune Evasion , Immunity, Innate/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19/transmission , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Immunity, Innate/genetics , Interferons/immunology , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Proteomics , RNA, Viral/genetics , RNA-Seq , SARS-CoV-2/classification , SARS-CoV-2/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL